Fabrication of Superhydrophobic and Luminescent Rare Earth/Polymer complex Films

نویسندگان

  • Zefeng Wang
  • Weiwei Ye
  • Xinran Luo
  • Zhonggang Wang
چکیده

The motivation of this work is to create luminescent rare earth/polymer films with outstanding water-resistance and superhydrophobicity. Specifically, the emulsion polymerization of styrene leads to core particles. Then core-shell-structured polymer nanoparticles are synthesized by copolymerization of styrene and acrylic acid on the core surface. The coordination reaction between carboxylic groups and rare earth ions (Eu(3+) and Tb(3+)) generates uniform spherical rare earth/polymer nanoparticles, which are subsequently complexed with PTFE microparticles to obtain micro-/nano-scaled PTFE/rare earth films with hierarchical rough morphology. The films exhibit large water contact angle up to 161° and sliding angle of about 6°, and can emit strong red and green fluorescence under UV excitation. More surprisingly, it is found that the films maintain high fluorescence intensity after submersed in water and even in aqueous salt solution for two days because of the excellent water repellent ability of surfaces.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Enhanced Procedure for Fabrication of an Ultrahydrophobic Aluminum Alloy Surface using Fatty Acid Modifiers

A superhydrophobic aluminum surface was fabricated through an enhanced low-cost approach and the effects of several relevant factors on static contact angle and sliding angle were investigated. First, the operating parameters including the etching time as well as the reaction time and temperature were varied. Next, the so-called chemical factors including three different fatty acids and five di...

متن کامل

Polycyclopentene-Crystal-Decorated Carbon Nanotubes by Convenient Large-Scale In Situ Polymerization and their Lotus-Leaf-Like Superhydrophobic Films.

In situ Pd-catalyzed cyclopentene polymerization in the presence of multi-walled carbon nanotubes (MWCNTs) is demonstrated to effectively render, on a large scale, polycyclopentene-crystal-decorated MWCNTs. Controlling the catalyst loading and/or time in the polymerization offers a convenient tuning of the polymer content and the morphology of the decorated MWCNTs. Appealingly, films made of th...

متن کامل

Visible tunable lighting system based on polymer composites embedding ZnO and metallic clusters: from colloids to thin films

The development of phosphor devices free of heavy metal or rare earth elements is an important issue for environmental reasons and energy efficiency. Different mixtures of ZnO nanocrystals with Cs2Mo6I8(OOC2F5)6 cluster compound (CMIF) dispersed into polyvinylpyrrolidone matrix have been prepared by very simple and low cost solution chemistry. The resulting solutions have been used to fabricate...

متن کامل

One-step fabrication process of superhydrophobic green coatings

In general, creation of superhydrophobic surfaces is composed of two steps: (i) creation of a rough surface and (ii) passivation of the surface with the low surface energy molecules or coatings. Superhydrophobic properties cannot be achieved on a surface without these two essential factors fulfilled. In the present work we have demonstrated that superhydrophobic silver films on copper (Cu) subs...

متن کامل

Tunable color generation of transparent composite films reinforced with luminescent nanofillers.

A new composite film based on calcined layered rare earth hydroxides and poly(vinyl alcohol) shows a visible light transmittance comparable to that of the pure matrix, highly reinforced mechanical strength as well as tunable photoluminescence in rolled and folded shapes.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016